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We investigate bilayer graphene transport in the presence of electron-hole puddles induced by long-range
charged impurities in the environment. We explain the insulating behavior observed in the temperature-
dependent conductivity of low mobility bilayer graphene using an analytic statistical theory taking into account
the non-mean-field nature of transport in the highly inhomogeneous density and potential landscape. We find
that the puddles can induce, even far from the charge neutrality point, a coexisting metallic and insulating
transport behavior due to the random local activation gap in the system.
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Recent experiments1–4 have revealed an intriguingly
strong �and anomalous� “insulating” temperature dependence
in the measured electrical conductivity of bilayer graphene
�BLG� samples, not only at the charge neutrality point �CNP�
where the electron-hole bands touch each other �with vanish-
ing average carrier density�, but also at carrier densities as
high as 1012 cm−2 or higher. �Insulating temperature depen-
dence of conductivity ��T� simply means an increasing �
with increasing temperature at a fixed gate voltage, which is,
in general, considered unusual in a nominally metallic sys-
tem where the resistivity, not the conductivity, should in-
crease with temperature.� Such an anomalous insulating tem-
perature dependence of ��T� is typically not observed in
monolayer graphene �MLG� away from the CNP although
the gate voltage �or equivalently, the density� dependence of
MLG and BLG conductivities are similar.5,6 To be specific
we mention the recent measurements by Zhu et al.,1 but
other groups2–4 have made very similar observations. In
Ref. 1, BLG ��T� increases by 20–40 % for carrier density
in the 3.19�1012−7.16�1012 cm−2 range as T increases
from 4 to 300 K compared with the corresponding MLG case
where ��T� decreases, as is customary for metallic transport,
by 10–30 % in the same temperature and similar density
range. The metallic nature of the BLG system is verified by
the fact that kFl�5–10 in Ref. 1, and is even higher in other
BLG samples studied by other groups.3,4 In addition, the
temperature range �4–300 K� satisfies the low temperature
T�TF criterion, making the insulating behavior very myste-
rious.

In this Rapid Communication we theoretically establish
that this anomalous insulating BLG ��T� behavior is likely
to be caused by the much stronger BLG density
inhomogeneity7 �compared with MLG� which gives rise to a
qualitatively new type of temperature dependence in
graphene transport, namely, the intriguing coexistence of
both metallic and activated transport, hitherto not discussed
in the literature. We therefore predict that the observed tem-
perature dependence of BLG ��T� arises from the same
charged impurity-induced puddles in the system which are
responsible for the minimum conductivity plateau at the
CNP.8 We provide an analytic theory which appears to be in
excellent qualitative agreement with the existing experimen-
tal results. One direct prediction of our theory, the suppres-

sion of the anomalous insulating temperature dependence in
high mobility samples with lower disorder, seems to be con-
sistent with experimental observations.

Our theory is based on a physically motivated idea: in the
presence of large potential fluctuations V�r�, the local Fermi
level, ��r�=EF−V�r�, would necessarily have large spatial
fluctuations �particularly when EF�s, where s=Vrms is the
root-mean-square fluctuations or the standard deviation in
V�r��, leading to a complex temperature dependence of trans-
port since both metallic and activated transport would be
present due to random local gap. Below we carry out an
analytical theory implementing this physical idea. We will
see that this physical idea leads to the possible coexistence of
metallic and activated transport, which explains the observed
temperature dependence of BLG transport.

We start by assuming that the disorder-induced potential-
energy fluctuations in the BLG are described by a distribu-
tion function P�V� which V=V�r� is the fluctuating potential
energy at the point r��x ,y� in the two-dimensional �2D�
BLG plane. We approximate the probability P�V�dV of find-
ing the local electronic potential energy within a range
dV about V to be a Gaussian form, i.e., P�V�= 1

�2�s2

�exp�−V2 /2s2�, where s is the standard deviation �or
equivalently, the strength of the potential fluctuation�. Then
in the presence of electron-hole puddles the density of states
�DOS� is reduced by the allowed electron region fraction and
given by D�E�=�−	

E D0P�V�dV=D0 erfc�−E /�2s� /2, where
erfc�x� is the complementary error function and D0
=gsgvm / �2�
2� is the DOS in a homogeneous system, where
m is the band effective mass, gs=2 and gv=2 are the spin and
valley degeneracies, respectively. We have D0=2.8
�1010 cm−2 /meV with the effective mass m=0.033me
�where me is the bare electron mass�. Note that the tail of the
DOS is determined by the potential fluctuation strength s and
the DOS in the presence of disorder is no longer a constant.

Since BLG is a gapless semiconductor the electron den-
sity at finite temperature increases due to the direct thermal
excitation from valence band to conduction band, and this
thermal excitation is an important source of temperature-
dependent transport. Thus, we first consider the temperature
dependence of thermally excited electron density. The total
electron density is given by
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ne = �
−	

	

D�E�
dE

e��E−EF� + 1
, �1�

where �=1 /kBT and EF is the Fermi energy. When the Fermi
energy is zero �or at CNP� all electrons are located in the
band tail at T=0 and the electron density in the band tail is
given by n0=ne�EF=0�=D0s /�2�. Note that the electron
density in the band tail is linearly proportional to the stan-
dard deviation s. At finite temperatures we find the
asymptotic behavior of n0�T�. The low-temperature �kBT /s
�1� behavior of electron density at CNP becomes

ne�T� = n0	1 +
�2

6

 kBT

s
�2� . �2�

Thus, the electron density increases quadratically in low-
temperature limit. For homogeneous BLG with the constant
DOS the electron density at finite temperatures is given by
ne�T�=D0 ln�2�kBT. The presence of the band tail suppresses
the thermal excitation of electrons and gives rise to the qua-
dratic behavior. However, at high temperature the density
increases linearly with the same slope as in the homogeneous
system, i.e.,

n�T�  D0	ln�2�kBT +
1

8

s2

�kBT�2� . �3�

In Fig. 1�a� we show the temperature-dependent electron
density at CNP for different standard deviations.

In the case of finite doping �or gate voltage�, i.e., the
Fermi level away from CNP, EF�0, the electron density of
the homogeneous BLG for s=0 is given by

n0e�T� = D0EF�1 + t ln�1 + e−1/t�� , �4�

where t=T /TF and TF=EF /kB. At low temperatures �T
�TF� the thermal excitation is exponentially suppressed due
to the Fermi function but at high temperatures �T�TF� it
increases linearly. In the presence of electron-hole puddles
�s�0� we have the electron density at zero temperature for
the inhomogeneous system,

ne�0� = D0EF	1

2
erfc
 − 1

�2s̃
� +

s̃
�2�

e−1/2s̃2� , �5�

where s̃=s /EF. At low temperatures �T�TF� the asymptotic
behavior of the electron density is given by

ne�T� = ne�0� + D0EF
�2

12�2

e−1/2s̃2

s̃

 T

TF
�2

. �6�

The leading-order term is the same quadratic behavior as in
undoped BLG �EF=0� but the coefficient is strongly sup-
pressed by fluctuation. In the case of sEF, the existence of
electron-hole puddles gives rise to a notable quadratic behav-
ior �see Fig. 1�b��. At high temperatures �T�TF� we find

ne�T� = n0e�T� +
D0EF

�1 + e�EF�2

s̃2

2

TF

T
. �7�

At CNP �EF=0� electrons and holes are equally occupied.
As the Fermi energy increases, more electrons occupy in-
creasingly larger proportion of space �see Fig. 1�c��. For
EF�s nearly all space is allowed to the electrons and the
conductivity of the system approaches the characteristic of
the homogeneous materials. In the presence of electron-hole
puddles, there is a possible coexistence of metallic and ther-
mally activated transport. When electron puddles occupy
more space than hole puddles, most electrons follow the con-
tinuous metallic paths extended throughout the system, but it
is possible at finite temperature that the thermally activated
transport of electrons persists above the hole puddles. On the
other hand, holes in hole puddles propagate freely but when
they meet electron puddles activated holes conduct over the
electron puddles. Carrier transport in each puddle is charac-
terized by propagation of weak scattering transport theory.7

The activated carrier transport of prohibited regions, where
the local potential energy is V less �greater� than Fermi en-
ergy for electrons �holes�, is proportional to the Fermi factor.
If �e and �h are the average conductivity of electron and hole
puddles, respectively, then the activated conductivities are
given by
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FIG. 1. �Color online� �a� The electron density at CNP as a function of temperature for different s. At T=0 the density is given by n0

=D0s /�2�. �b� The temperature-dependent electron density at finite EF for different s. For s /EF�0 the leading-order behavior is quadratic
while at s=0 the density is exponentially suppressed. �c� Total electron densities �solid lines� and hole densities �dashed lines� as a function
of EF for two different s=30 and 70 meV. The linear line represents the density difference n=ne−nh=D0EF, which linearly depends on the
Fermi energy. The densities at the band tails are given by ne�EF=0�=nh�EF=0�=D0s /�2�.
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�e
�a��V� = �e exp���EF − V�� , �8a�

�h
�a��V� = �h exp���V − EF�� , �8b�

where the density and temperature-dependent average con-
ductivities ��e and �h� are given within the Boltzmann trans-
port theory7 by �e=nee

2��� /m and �h=nhe2��� /m, where ne
and nh are average electron and hole densities, respectively,
and ��� is the transport relaxation time which depends explic-
itly on the scattering mechanism.7

Now we denote the electron �hole� puddle as region “1”
�2�. In region 1 electrons occupy more space than holes when
EF0. The fraction of the total area occupied by electrons
with Fermi energy EF is given by p=�−	

EF P�V�dV. Then the
total conductivity of region 1 can be calculated,

�1 =
1

p
�

−	

EF

��e + �h
�a��P�V�dV

=�e +
�h

2p
e��2s2/2�−�EF erfc
−

EF

�2s
+

�s
�2

� . �9�

At the same time the holes occupy the area with a fraction
q=1− p and the total conductivity of region 2 becomes

�2 =
1

q
�

EF

	

��e
�a� + �h�P�V�dV

= �h +
�e

2q
e��2s2/2�+�EF erfc
 EF

�2s
+

�s
�2

� . �10�

The �1 and �2 are distributed according to the binary distri-
bution. The conductivity of binary system can be calculated
by using the effective-medium theory of conductance in
mixtures.9 The result for a 2D binary mixture of components
with conductivity �1 and �2 is given by9

�t = 
p −
1

2
�	��1 − �2� +���1 − �2�2 +

4�1�2

�2p − 1�2� .

�11�

This result can be applied for all Fermi energy. For a large
doping case, in which the hole puddles disappear, we have
p=1 and �2=0, then Eq. �11� becomes �=�1, i.e., the con-
ductivity of electrons in the homogeneous system.

We first consider the conductivity at CNP �EF=0�. The
conductivities in each region are given by

�1 = �e	1 +
�

2p
e�2s2/2 erfc��s/�2�� , �12a�

�2 = �h	1 +
1

2q�
e�2s2/2 erfc��s/�2�� , �12b�

where �=nh /ne is the ratio of the hole density to the electron
density. Since the electrons and holes are equally populated
we have p=q=1 /2 and �e=�h, then the total conductivity
becomes �t=��1�2=�1. The asymptotic behavior of the
conductivity at low temperatures �kBT�s� becomes

�t�T� = �e	1 +� 2

�

kBT

s
−

2
��

�kBT�3

s3 � . �13�

The activated conductivity increases linearly with a slope
�2 /�kB /s as temperature increases. Because s is typically
smaller in higher mobility sample, the high mobility samples
show stronger insulating behavior at low temperatures. The
next order temperature correction to conductivity arises from
the thermal excitation given in Eq. �2� which gives T2 cor-
rections. Thus in low-temperature limit the total conductivity
at CNP is given by

�t�T� = ��0�	1 +� 2

�

kBT

s
+

�2

6

 kBT

s
�2� . �14�

At high temperatures �kBT�s� we have

�t = �e	2 −� 2

�

s

kBT
+

s2

2�kBT�2� . �15�

The total conductivity due to the activation behavior ap-
proaches a limiting value and all temperature dependence
comes from the thermal excitation through the change in
carrier density given in Eq. �3�. Thus at very high tempera-
tures �T�s /kB� the BLG conductivity at the charge neutral
point increases linearly with a universal slope ln�2� regard-
less of the sample quality. In Fig. 2 we show the calculated
temperature-dependent conductivity at charge neutral point.

At finite doping �EF0� the temperature-dependent con-
ductivities are very complex because three energies �EF, s,
and kBT� are competing. Especially when kBT�s, regardless
of EF, we have the asymptotic behavior of conductivities in
region 1 and 2 from Eqs. �9� and �10�, respectively,

�1 = �e	1 +
�

2p
e−1/2s̃2� 2

�

1

s̃/t − 1/s̃
� , �16a�

�2 = �h	1 +
1

2q�
e−1/2s̃2� 2

�

1

s̃/t + 1/s̃
� , �16b�

where s̃=s /EF and t=T /TF. The leading-order correction is
linear but the coefficient is exponentially suppressed by the
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FIG. 2. �Color online� �t�T� at charge neutral point for different
s. Inset shows the thermally activated conductivity as a function
temperature.
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term exp�−EF
2 /2s2�. This fact indicates that in the high mo-

bility sample with small s, the activated conductivity is
weakly temperature dependent except around CNP, i.e., EF
�s. Since the density increase by thermal excitation is also
suppressed exponentially by the same factor �see Eq. �6�� the
dominant temperature-dependent conductivity arises from
the scattering time.7 On the other hand, for a low mobility
sample with a large s, the linear temperature dependence due
to thermal activation can be observed even at high densities
EF�s.

In Fig. 3 we show the total conductivities �a� for a fixed
EF and several s and �b� for a fixed s and several EF. In total
conductivity the activated insulating behavior competes with
the metallic behavior due to the temperature-dependent
screening effect. When s is small the activated behavior is
suppressed. As a result the total conductivity manifests the
metallic behavior.7 However, for large s the activated tem-
perature dependence behavior overwhelms the metallic tem-
perature dependence and the system shows insulating behav-
ior.

Finally, we discuss three important issues: �1� the same
physics, of course, also applies to MLG graphene, but the
quantitative effects of inhomogeneity �i.e., the puddles� are
much weaker since simple estimates show that the dimen-
sionless potential fluctuation strength s̃��s /EF� is much
weaker in MLG than in BLG because of the linear �MLG�
versus constant �BLG� DOS in the two systems. In particular,
s̃BLG / s̃MLG32�ñ, where ñ=n /1010, and therefore, s̃BLG
� s̃MLG up to n=1013 cm−2. Direct calculations7 show that
the self-consistent values of s tends to be much larger in
BLG than in MLG for identical impurity disorder. In very
low mobility MLG samples, where s is very large, the insu-
lating behavior of temperature-dependent resistivity can be
observed at high densities even in MLG samples.10,11 �2� We
have neglected all quantum tunneling effects in our consid-
eration because they are unimportant except at very low tem-
peratures. In particular, Klein tunneling is strongly sup-
pressed in strong disorder.12 �3� In the presence of a BLG
gap ��g�, the situation becomes extremely complicated since
four distinct energy scales �s, EF, kBT, and �g� compete, and
any conceivable temperature dependence may arise depend-
ing on the relative values of these four energy scales. It is,
however, obvious that any experimental measurement of the
activation gap ��a� in such an inhomogeneous situation will
produce �a��g unless �g�s. The system is now dominated
by a random local gap arising from the competition among s,
�g, and EF, and no simple activation picture would apply.
This is precisely the experimental observations.13–15 �4� Our
assumption of the quadratic band dispersion is valid only at
low ��5�1012 cm−2� carrier densities for BLG systems
where most of the current transport experiments have been
carried out. At higher densities the band dispersion is effec-
tively linear and the disorder effects on ��T� are weaker.
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FIG. 3. �Color online� �a� �t�T� for EF=55 meV and for differ-
ent s. �b� �t�T� for s=50 meV and for several EF=18, 36, 55, and
78 meV, which correspond to the densities n=0.5�1012, 1.0
�1012, 1.5�1012, and 2.0�1012 cm−2.
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